COOLFluiD  Release kernel
COOLFluiD is a Collaborative Simulation Environment (CSE) focused on complex MultiPhysics simulations.
atest-flatplate2d-laminar.py
Go to the documentation of this file.
1 import sys
2 #sys.path.append('/data/scholl/coolfluid3/build/dso')
3 # sys.path.append('/home/sebastian/coolfluid3/build/dso')
4 import coolfluid as cf
5 
6 # Some shortcuts
7 root = cf.Core.root()
8 env = cf.Core.environment()
9 
10 ## Global confifuration
11 env.assertion_throws = False
12 env.assertion_backtrace = False
13 env.exception_backtrace = False
14 env.regist_signal_handlers = False
15 env.log_level = 4
16 
17 # setup a model
18 model = root.create_component('NavierStokes', 'cf3.solver.ModelUnsteady')
19 domain = model.create_domain()
20 physics = model.create_physics('cf3.UFEM.NavierStokesPhysics')
21 solver = model.create_solver('cf3.UFEM.Solver')
22 
23 # Add the Navier-Stokes solver as an unsteady solver
24 nstokes = solver.add_unsteady_solver('cf3.UFEM.NavierStokes')
25 
26 # Generate mesh
27 blocks = domain.create_component('blocks', 'cf3.mesh.BlockMesh.BlockArrays')
28 points = blocks.create_points(dimensions = 2, nb_points = 12)
29 points[0] = [0, 0.]
30 points[1] = [1, 0.]
31 points[2] = [0.,0.2]
32 points[3] = [1, 0.2]
33 points[4] = [0.,1.1]
34 points[5] = [1, 1.2]
35 
36 points[6] = [2.,0.]
37 points[7] = [2, 0.2]
38 points[8] = [2, 1.3]
39 
40 points[9] = [-1.,0.]
41 points[10] = [-1, 0.2]
42 points[11] = [-1, 1.]
43 
44 block_nodes = blocks.create_blocks(6)
45 block_nodes[0] = [0, 1, 3, 2]
46 block_nodes[1] = [2, 3, 5, 4]
47 
48 block_nodes[2] = [1, 6, 7, 3]
49 block_nodes[3] = [3, 7, 8, 5]
50 block_nodes[4] = [9, 0, 2, 10]
51 block_nodes[5] = [10, 2, 4, 11]
52 
53 block_subdivs = blocks.create_block_subdivisions()
54 block_subdivs[0] = [20, 10]
55 block_subdivs[1] = [20, 10]
56 block_subdivs[2] = [20, 10]
57 block_subdivs[3] = [20, 10]
58 block_subdivs[4] = [20, 10]
59 block_subdivs[5] = [20, 10]
60 
61 gradings = blocks.create_block_gradings()
62 gradings[0] = [1., 1., 5., 5.]
63 gradings[1] = [1., 1., 10., 10.]
64 gradings[2] = [1., 1., 5., 5.]
65 gradings[3] = [1., 1., 10., 10.]
66 gradings[4] = [1., 1., 5., 5.]
67 gradings[5] = [1., 1., 10., 10.]
68 
69 # fluid block
70 inlet_patch = blocks.create_patch_nb_faces(name = 'inlet', nb_faces = 2)
71 inlet_patch[0] = [10, 9]
72 inlet_patch[1] = [11, 10]
73 
74 bottom_patch1 = blocks.create_patch_nb_faces(name = 'bottom1', nb_faces = 1)
75 bottom_patch1[0] = [0, 1]
76 
77 bottom_patch2 = blocks.create_patch_nb_faces(name = 'bottom2', nb_faces = 1)
78 bottom_patch2[0] = [1, 6]
79 
80 bottom_patch3 = blocks.create_patch_nb_faces(name = 'bottom3', nb_faces = 1)
81 bottom_patch3[0] = [9, 0]
82 
83 outlet_patch = blocks.create_patch_nb_faces(name = 'outlet', nb_faces = 2)
84 outlet_patch[0] = [6, 7]
85 outlet_patch[1] = [7, 8]
86 
87 top_patch = blocks.create_patch_nb_faces(name = 'top', nb_faces = 3)
88 top_patch[0] = [5, 4]
89 top_patch[1] = [8, 5]
90 top_patch[2] = [4, 11]
91 
92 mesh = domain.create_component('Mesh', 'cf3.mesh.Mesh')
93 blocks.create_mesh(mesh.uri())
94 nstokes.regions = [mesh.topology.uri()]
95 
96 u_in = [1., 0.]
97 u_wall = [0., 0.]
98 
99 # Add initial conditions for the Navier-Stokes solver, which uses 'navier_stokes_solution' as a tag for its solution fields
100 ic_ns = solver.InitialConditions.navier_stokes_solution
101 
102 # initial conditions
103 ic_ns.Velocity = u_in
104 
105 # properties for Navier-Stokes
106 physics.density = 1.2
107 physics.dynamic_viscosity = 1.7894e-5
108 
109 # Boundary conditions for Navier-Stokes
110 bc = nstokes.BoundaryConditions
111 bc.add_constant_bc(region_name = 'inlet', variable_name = 'Velocity').options().value = u_in
112 bc.add_constant_bc(region_name = 'bottom1', variable_name = 'Velocity').options().value = u_wall
113 bc.add_constant_bc(region_name = 'bottom2', variable_name = 'Velocity').options().value = u_wall
114 bc.add_constant_component_bc(region_name = 'bottom3', variable_name = 'Velocity', component = 1).options().value = 0.
115 bc.add_constant_bc(region_name = 'outlet', variable_name = 'Pressure').options().value = 0.
116 bc.add_constant_bc(region_name = 'top', variable_name = 'Velocity').options().value = u_in
117 
118 # Time setup
119 time = model.create_time()
120 time.time_step = 0.1
121 
122 # Setup a time series write
123 final_end_time = 1.
124 save_interval = 0.1
125 time.end_time = 0.
126 iteration = 0
127 while time.end_time < final_end_time:
128  time.end_time += save_interval
129  model.simulate()
130  domain.write_mesh(cf.URI('atest-flatplate2d-laminar-' +str(iteration) + '.pvtu'))
131  iteration += 1
132  if iteration == 1:
133  solver.options.disabled_actions = ['InitialConditions']
134 
135 # print timings
136 model.print_timing_tree()
Send comments to:
COOLFluiD Web Admin